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ABSTRACT 

Since ancient times, adversary modeling has been used 

during wargaming exercises in which military leaders have 

recreated past battles or simulated future battles in order 

to educate military professionals.  Although the technology 

today is much different, adversary modeling still serves the 

same goals – to help military professionals learn tactics 

from past successes and mistakes.  In the computer age, 

highly accurate models and simulations of the enemy can be 

created.  However, including the effects of motivations, 

capabilities, and weaknesses of adversaries in current wars 

is still extremely difficult. 

Limit Texas Hold’em poker, with many attributes similar 

to real-world warfare, is an excellent test-bed to study and 

improve adversary modeling.  For example, stochastic 

outcomes which deal with multiple independent agents, 

deception, and acting amidst uncertainty, are some of the 

aspects of poker that closely resemble important aspects of 

warfare.  These attributes make poker a better choice as a 

study platform than other traditional games, such as chess, 

where there is no deception or uncertainty.   

The defined rules of poker provide researchers with a 

controlled environment to improve and test adversary-

modeling techniques.  Perfecting adversary modeling in poker 

will allow simulators to improve and generate more accurate 

models for wargames, giving warfighters the advantage in 

current and future battles. 
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I. INTRODUCTION  

A. HISTORY OF ADVERSARY MODELING 

The importance of adversary modeling has been known for 

centuries.  Sun Tzu [1], the 6th Century B.C. military 

strategist wrote: 

If you know the enemy and know yourself, you need 

not fear the result of a hundred battles.  If you 

know yourself but not the enemy, for each victory 

gained, you will also suffer a defeat. 

Adversary modeling has been used since ancient times in 

a military context during a process called wargaming.  

During a wargame, commanders seek to improve their battle 

plan by stepping through the plan with consideration given 

to the enemy’s actions, reactions, strengths and weaknesses.  

Adversary modeling is conducted by an intelligence officer 

who has studied the enemy’s capabilities and whose goal is 

to defeat the commander’s plan so as to improve the plan.   

Besides military applications, adversary modeling is 

used in a wide variety of areas.  For example, in the 

computer-security realm, network-security professionals 

frequently create models of potential attackers in order to 

help them identify when their systems are being attacked.  

Additionally, adversary modeling has been studied and shown 

to improve bot performances in games such as Scrabble and 

RoShamBo [2],[3],[4]. 
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1. Pre-Computer Adversary Modeling 

Games like Go and Chess were used teach soldiers 

competence in battlefield situations.  In these games, 

adversary modeling is not as important because they are 

perfect information games where all elements of the game 

(i.e., game board and game pieces) are known to all players.  

However, in actual wargaming situations, only limited 

information about the enemy is known and the rest must be 

inferred by an intelligence officer.  Using the simplest 

adversary model, the intelligence officer acts as a friendly 

commander would act.  While this approach does help find 

some weaknesses in a plan, it is far from being realistic.  

A much better model would simulate the enemy’s actions 

according to that enemy’s own doctrine.  Although the 

benefits of this model are enormous because the enemy 

actions can reflect the leadership of a specific enemy 

commander, it necessitates a thorough understanding of the 

enemy commander’s tactics and observations obtained through 

vigorous analysis from many previous battles.   

2. Computational Approaches 

Since the advent of computers, wargaming has improved 

through more complex modeling and simulations.  Using a 

computer and simulated battles, models of friendly and enemy 

units can fight with no loss of life, equipment, or other 

valuable resources.  An accurate knowledge of an enemy’s 

doctrine, tactics, and motivations can tremendously improve 

the accuracy of these models and simulations.  These 

modeling and simulation techniques have been incorporated 

into a commercial setting with the popularity of video 
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games.  Today, countless video games simulate old battles or 

create fictional or fantastic scenarios allowing players to 

wage battles with different tactics.   

B. IMPORTANCE OF ADVERSARY MODELING 

In all of the situations described above, highly 

accurate models of opponents increase the utility of the 

game.  In commercial computer games, this makes a more 

realistic and higher selling game.  In the wargaming 

scenario, a better model of the enemy helps create a better 

plan to defeat the enemy. 

1. Military and Intelligence Community Adversary 
Modeling 

During the Cold War, adversary models were simpler than 

they are today because Soviet doctrine was relatively well 

known.  Battles and wars could be simulated during the 

wargame based on knowledge gleaned from past battles, known 

tactics and commanders, and obvious motivations and morale 

of the soldiers.  Since the end of the Cold war and the 

beginning of the War on Terror, adversary models have become 

increasingly difficult to create accurately.  Not only do 

motivations of a terrorist differ greatly from the 

motivations of a soldier fighting for his state, motivations 

of different terrorist groups can be vastly different from 

each other as well.  For these reasons, modeling in this new 

age of warfare is very difficult. 

2. Poker Adversary Modeling 

The game of poker provides an excellent test-bed for 

adversary modeling.  Poker is a game containing stochastic 
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events, imperfect information, multiple competing agents, 

and deception.  Like the real-world scenario of warfare, 

adversary modeling substantially improves performance in a 

poker game.   

a. Introduction to Poker 

In our studies, we use Limit Texas Hold’em Poker.  

The game is played with blind bets that players must make 

before cards are dealt.  The first person to the left of the 

dealer begins with a bet called the “small blind.” The 

person on their left follows the small blind with a bet 

called the “big blind,” which is twice the size of the small 

blind.  These bets, similar to an ante, are used to 

instigate action, or encourage others to bet.  All 

subsequent bets and raises in the first to rounds are the 

size of the big blind.   

A hand begins with each player being dealt two 

cards, called “hole cards,” only known to that player.  The 

blinds are considered legal bets; therefore, the person to 

the left of the big blind is the first person to act after 

looking at their hole cards.  This person now has three 

options – fold, call, or raise.  A “fold” means that the 

player does not wish to continue and opts out of the hand.  

A “call” means that the player wishes to play for the number 

of bets that has already been established (in this case one 

– the big blind).  A “raise” means that the player wishes to 

increase the number of bets from one (the big blind) to two 

(twice the amount of the big blind).  This concept of the 

number of bets is sometimes referred to as “bets-to-go” or 

“bets-to-call.”  Two bets-to-go simply means that all 

players who want to remain in the hand must pay two bets.  
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Play continues around the table until all players have 

either folded or called the highest raise.  (Note: rules 

dictate that all betting rounds are capped at four bets.)  

If only one player remains, that player wins all the money 

in the pot and does not have to show their cards.  The 

action up to this point is referred to as “pre-flop.”   

The “flop” is when three community cards (also 

called board cards) are placed face up in the center of the 

table.  These cards are used by all players remaining in the 

hand.  All remaining action is referred to as “post-flop.”  

At this point, another round of betting begins.  The first 

player remaining in the hand to the left of the dealer acts 

first.  He can “check” or “bet.”  A check means that the 

player does not want to bet, and since no one else has bet, 

the player does not have to fold.  A check keeps the game at 

zero bets-to-go while a bet makes it one bet-to-go.  The 

betting continues as before, until everyone has folded or 

called the highest bet, or until only one player remains.  

Again the betting is capped at four bets-to-go.  Now, a 

fourth community card, called the “turn,” is dealt.  This is 

followed by another betting round; however, all bets for 

this round and the final betting round are twice the size as 

the bets in the first two rounds.  Finally, the “river” is 

the fifth and final community to be dealt.  Following the 

river, there is a final betting round.  At the end of this 

betting round, if more than one player remains, there is a 

“showdown” where the remaining players’ cards are revealed. 

The highest five-card poker hand—five cards can be taken 

from any combination of the player’s two hole cards and the  
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five community cards—wins the pot.  The hand is now over, 

and the dealer position is moved one seat to the left to 

initiate a new hand. 

For simplicity, player’s actions can be viewed as 

three choices: raise, call or fold.  Bets and raises can be 

abstracted together and called a raise.  A bet is simply a 

special case of a raise when the betting round is zero bets-

to-go.  Similarly, a check and call can be abstracted to a 

call, the check being a special case of a call when a player 

does not want to increase the number of bets-to-go from 

zero. 

b. Importance of Adversary Modeling in Poker 

Adversary modeling is a vital part of maximizing 

your play in poker.  Research has shown that the game-

theoretic optimal solution does not necessarily result in 

the best poker player [5].  Game theory approaches result in 

good but defensive play, where a player will never lose big, 

but they will also never win big.  A good model of a poker 

adversary will allow us to exploit their weaknesses, thereby 

allowing us to win larger amounts of money. 

C. MOTIVATION AND PURPOSE OF STUDY 

Poker allows us to improve adversary-modeling 

techniques in a structured domain.  Not only does poker 

sufficiently limit the domain with its rule set, its 

stochastic elements and hidden information provide a high 

resemblance to real-world adversarial situations, providing 

an accurate test-bed for adversary-modeling research. 
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In poker, every opponent has hidden information.  More 

specifically, their hole cards are known only at the end of 

a hand, if at all.  To apply this concept to warfare, it is 

evident that enemies have secrets.  For example, the number 

of members in a terrorist cell is hidden and can change 

frequently, making that information impossible to know at 

all times.  The dealing of cards is a stochastic event, 

which can be comparable to the numbers of disaffected youths 

that could be influenced by terrorist rhetoric.  The 

strength of a player’s hand can be determined and compared 

to the other possibilities of an opponents hand based on the 

community cards.  Correspondingly, the strengths of 

terrorist groups might be calculated and compared.   The 

number of bets-to-call could parallel the cost of military 

or political actions.  In poker, “pot odds” is a measure of 

the reward of an action compared to the cost of that action 

and could be analogous to many military operations. 
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II. RELATED WORK 

In the last decade, an increasing number of researchers 

began studying poker.  For the last two years, a poker bot 

competition has been part of the annual Association for the 

Advancement of Artificial Intelligence (AAAI) convention.  

The fixed nature of this game (e.g. rules, betting actions) 

allows researches to build and improve adversary modeling 

techniques that can then be used in other domains.  

Adversary modeling is an important aspect of successful 

poker bots.   

A. THE UNIVERSITY OF ALBERTA’S COMPUTER POKER RESEARCH 
GROUP 

The University of Alberta’s (U of A) Computer Poker 

Research Group (CPRG) conducted the seminal research in this 

field.  In [6], Billings provides a concise synopsis of the 

major accomplishment of the CPRG.  Perhaps most importantly, 

they established a publicly available corpus of poker game 

data that can aid in adversary-modeling experiments.  They 

studied limit Texas Hold’em—recently focusing on heads-up 

games involving only two players.   

Their research began with poker bots that are derived 

from a rule-based system.  As is typical in artificial 

intelligence, this method has only limited effectiveness 

while the rules and knowledge base increase rapidly.  The 

CPRG then attempted to calculate optimal play game 

theoretically.  Finally, the CPRG experimented with using 

game-tree search methods to make decisions that result in 
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the highest expected value.  Varying degrees of adversary 

modeling are attempted by the CPRG, as discussed below.   

1. Knowledge-Based Poker Player 

The first iterations of the U of A’s CPRG’s poker bots 

used knowledge-based artificial intelligence to establish a 

baseline.  Only average poker play was attainable before the 

knowledge base and rules became too large and complex.  The 

adversary modeling performed in this poker bot was based on 

observed statistics.  The crucial information to deduce is 

the adversary’s hole cards.  In the CPRG’s studies, the 

opponent’s hole cards are abstracted into 169 distinct 

hands.  There are 13 different ranks, Two through Ace, and 

the cards are either suited or unsuited—making 169 distinct 

hands.   

The simplest starting point for the probability of an 

adversary’s hole cards is to assume a flat probability 

distribution function.  This will provide a baseline, but 

will not correctly represent the probability of an adversary 

playing those hands because most players will play “better” 

hands with more probability than “worse” hands.  The key 

variable is to determine which cards an opponent deems 

“better.” 

Using the “reasonable man” approach, the CPRG developed 

a generic adversary model (GOM) to infer which hole cards an 

average player is going to play.  Billings et al. calculate 

an income rate, which is the expected value, for each 

possible pair of hole cards using simulations in [8].  

Obviously, a “reasonable man” is less likely to play hands 

that result in a negative income.  They assign probabilities 
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to each of the 169 starting hands that are based on the 

calculated income rate of that hand.  As the play of a hand 

unfolds, they adjust these probabilities based on actions in 

a hand.  For example, if the adversary raises, the 

probabilities assigned to the hands with high income rates 

are increased, while the probabilities for the hands with 

low income rates are decreased.  The increases are done 

based on rules that are applied to all players.  However, 

not all players act as this GOM does.  Some players are 

attracted to straights and flushes and are thus more likely 

to play cards that have a better chance of making those 

hands. 

The CPRG performs specific opponent modeling (SOM) by 

changing the weights differently for each individual 

adversary.  For example, if an adversary usually bets with a 

flush draw, their algorithm will increase the probabilities 

of those hands that give the adversary a flush draw.  In 

order to deduce the probabilities to use at the start of a 

hand for a specific adversary, the CPRG maintains counts of 

betting frequencies in certain contexts of the game.  As 

discussed in the introduction to poker, there are three 

actions: bet, call or fold.  Their system tracks the 

frequencies of these actions in twelve different contexts: 

based on the betting round (pre-flop, flop, turn, river) and 

the number of bets-to-call (zero, one and two or more).  

Over time, these frequencies would begin to evolve and could 

lead one to make assumptions about an adversary.  For 

example, if a player bet 35% of the time after the flop when 

there are zero bets-to-call, one could assume that the 

adversary would bet with the top 35% of hands, or the top 

30% of hands and the other 5% based on strong drawing hands.  
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For pre-flop frequencies, these percentages are mapped back 

to the income rates.  Post-flop, the frequencies are mapped 

to a hand strength based on possible adversary hole cards 

combined with the board cards.  In [8], the CPRG admits that 

this method is flawed because it is based on the CPRG’s 

calculations of income rates and hand strengths, which may 

be different from how the adversary calculates the strength 

of their hand. 

In [9], the CPRG improved this method of adversary 

modeling based on the results of experiments with Artificial 

Neural Networks (ANNs).  They used 19 different aspects of 

the game context as inputs to the ANN which would then 

produce a likelihood of a raise, call, or fold from an 

adversary.  They determined that ANNs were good at filtering 

out noisy aspects of game contexts, but required too many 

historical hands before becoming accurate.  Thus, ANNs are 

not feasible for the real-time nature of poker.  However, 

they did ascertain that “last bets-to-call” and “last 

action” were important factors for an adversary’s decision.  

These two dimensions of the game were added to the 

statistical model described above which produced improved 

results. 

In the methods described above, there is minimal use of 

the board cards in the context of the game, which seems to 

be a conspicuous weakness. 

2. Game Theoretic Methods 

The CPRG devotes time to finding the game-theoretic 

optimal solution at each decision node.  They apply a 

randomized mixed strategy to the adversary’s actions.  With 
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no adversary modeling done in these experiments, the actions 

of the poker bot are only based only on known cards.  The 

play of their bot improves significantly over the knowledge-

based system and is even able to initially play well against 

a professional poker player.  However, given more time, the 

professional is able to discover weaknesses and can exploit 

the bot [5]. 

3. Game Tree Search Methods 

In their next set of experiments, the CPRG employs 

methods that search game trees in order to maximize the 

expected value (EV) of their decisions [10],[11].  In their 

game tree, there are four different types of nodes:  chance 

nodes, adversary decision nodes, program decision nodes and 

leaf nodes.  The chance nodes simply relate to the possible 

cards that could follow based on the known cards up to that 

point.  The program decision nodes are where the program 

decides which action will result in the highest EV, with 

some variability added to disguise the program’s play.  The 

adversary decision nodes are an estimated probability that 

the adversary will take each action: raise, call, or fold.  

This probability is based on counts of past actions at the 

corresponding point in the game tree and is in no way 

affected by the cards the adversary holds or the community 

cards, even if the previous counts ended in a showdown, 

where the adversary’s cards are revealed.  The leaf nodes 

contain the EV of that node and the probability of winning 

the pot.  The probability of winning the pot is determined 

using a histogram of previous hand strengths that the 

adversary has shown at showdowns that correspond to that 

leaf in the game tree.  The program will compare its hand 
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strength at that leaf to the hand strength histogram of the 

adversary to determine the probability of winning the hand. 

This method uses abstractions when the game tree is 

incomplete in order to be effective when little information 

is known.  One abstraction is obtained by using all branches 

of the game tree that have the same number of bets and 

raises, ignoring when the bets and raises are made.  

Another, finer-grained version of that abstraction uses all 

branches with the same ordered pair of the total bets and 

raises of both players.  A more coarse-grained abstraction 

is simply the total number of bets and raises by both 

players.  Another form of abstraction considers only the 

final size of the pot.  In their experiments, the CPRG uses 

a combination of all of these abstractions.  The 

abstractions are weighted stronger for the finer granularity 

of the abstraction and a mixture of all is used based on the 

weighting system.  Generic adversary models are used as 

defaults until enough hands are recorded to make the 

specific adversary modeling precise.   

This method completely ignores the fact that the board 

cards will factor into the adversary’s decision making 

process.  Additionally, a high computation time is needed 

for all decisions because the entire game tree must be 

searched to completion for each decision. 

4. Bayes’ Bluff 

In [12], Southey, et al, experiment with a 

probabilistic model for opponent modeling.  Each player has 

a strategy that is known only by them.  Each player also has 

an information set for each hand consisting of the cards 
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visible to them.  Using Bayes’ Rule, the probabilities of an 

opponent playing different strategies are calculated using 

the observations of all hands—hands that go to a showdown 

and hands that are folded.  Next, the authors use the 

posterior distribution over the strategies to determine the 

best response to an opponent in the current hand.  The best 

response is the action that results in the highest expected 

value.  The authors tested this method against various other 

poker bots.  The results show that this model is effective 

in countering an opponent’s strategy in as little as 200 

hands.   

B. OTHER RESEARCH 

As poker increases in popularity revealing more 

complexities, other researchers have joined in with 

experiments of their own.  The most influential methods for 

the research described in this thesis follow. 

1. Carnegie-Mellon University Method 

In [13],[14],[15], Gilpin and Sandholm describe a 

method of calculating the game theory equilibrium and then 

use Bayes rule for predicting the hole cards of an opponent.  

Offline, they compute optimal strategies for playing the 

pre-flop and flop rounds.  They first use automated 

abstraction techniques to condense the complexities of the 

game.  Then, they perform equilibrium computations using 

linear programming to calculate the expected value of future 

stochastic events (cards dealt in the upcoming turn and 

river rounds) without regards to future bets.  During the 

turn and river rounds, the authors apply Bayes’ rule to 

calculate the probability of all possible hole cards based 
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on the computed strategies and the observed actions in the 

prior rounds.  This method is computationally expensive but 

accounts for game context more than many other methods 

described in this thesis.  However, the authors do not use 

any information from previous hands to influence action of 

the bot.  Although their poker bot did win small amounts of 

money in their early experiments, the authors could not show 

that their poker player preformed better than the expected 

variance of Texas Hold’em [13].  Later results in [14],[15] 

show that their improvements produced a statistically 

significant win rate. 

2. Bayesian Networks 

There have been several researchers who conducted 

experiments using Bayesian networks in [16],[17],[18],[19].  

Although Korb, et al, and Boulton [17],[18] describe 

research conducted using another form of poker (Five Card 

Stud), it is useful to discuss their use of Bayesian 

networks which is the basis for later models that Carlton 

describes in [19].   

In [20], Russell and Novrig describe a Bayesian network 

as a directed acyclical graph in which each node represents 

a random variable and each arc represents influence of one 

node on another node.  Conditional probability tables are 

used to quantify the effect that parent nodes have on the 

child.  The biggest drawback of using Bayesian networks for 

modeling opponents is the need of these defined 

dependencies.  The authors of [16] use dependencies among 

such game attributes as position, action, pot odd, hand 

strength, etc.  However, not every poker player uses the 

same variables nor is everybody’s dependencies the same as 
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the authors’.  This is evidenced by fact that the Bayesian 

networks shown in [17],[18],[19] use different nodes and 

arcs in their models.   

In [19], Carlton creates a generic opponent model by 

using self-play to initialize the conditional probability 

tables.  This bootstraps the Bayesian network in order to be 

more effective at the start of play against an unknown 

opponent.  Then, a generic opponent model is created by 

editing the conditional probability tables according to the 

actions of a specific opponent during game play.   

The authors of these papers show little accuracy in 

their results.  Carlton showed the best results in [19], but 

was still not able to beat human opponents or the state-of-

the-art poker bots.  These authors suggest that a more 

complex Bayesian network or a dynamic Bayesian network may 

yield better results.  Dynamic Bayesian networks allow the 

relationships between the nodes to change at different 

stages of the game, but the dependencies still need to be 

defined.   

C. RESEARCH CONDUCTED IN THIS THESIS 

1. The Use of Game Context 

Most of the methods described above made little use of 

the context of the game.  In poker, this would be the 

community cards and the actions taken given these community 

cards.  Additionally, the cards revealed at showdown can be 

rolled back to give insight into the decision made earlier 

in the hand.   
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The methods that do use game context use Bayesian 

Networks where the variables and dependencies are hard-

coded.  This, as discussed above, does not work well against 

opponents who do not use the same variables and 

dependencies. 

2. Hidden Markov Models 

Hidden Markov Models (HMMs) have an advantage over the 

methods describe above.  Using HMMs, one can take into 

account the entire context of the game without defining the 

variables and dependencies that an opponent might use to 

make decisions.  The hidden states in the HMM can represent 

the variables and dependencies used by an opponent to make 

his decisions.  Furthermore, training the HMM for different 

opponents over different sequences of actions during the 

hands of a game allow the HMM to accurately represent 

different opponents. 
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III. DATA GATHERING AND DESIGN OF EXPERIMENTS 

A. DATA GATHERING 

1. University of Alberta’s Corpus 

The University of Alberta collected data from IRC-based 

poker rooms for years.  This data is available online [21].  

This corpus is used for much of the research conducted by 

the University of Alberta and other scientists.  The corpus 

consists of a separate folder for each month of play.  

Within each month folder there is a hand database file, a 

hand roster file, and a player database folder.   

The hand database file lists, from left to right, a 

timestamp for the hand, the position of the dealer, the hand 

number, the number of players dealt in the hand, the number 

of players, the amount of money in the pot at the flop, 

turn, river, and showdown, and the community cards that were 

dealt (See Figure 1). 

 

Figure 1.   Example hand database information. 

The hand roster, shown in Figure 2, consists of the 

timestamp for each hand, the number of players dealt in that 

hand and the user name of each player dealt in that hand.  
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Figure 2.   Example hand roster information. 

The player database folder contains a separate file for 

each player who played at least one hand during that month.  

These files list the following information for each hand in 

which the player participated (See Figure 3):  their name, 

the timestamp of the hand, the number of players dealt in 

that hand, their position relative to the “dealer” position, 

their actions, the amount of money they had at the beginning 

of the hand, the amount they contributed to the pot, the 

amount they won from the pot, if any, and their hole cards, 

if they were involved in a showdown.   

 

Figure 3.   Example player database information. 

All information needed for this research was 

ascertained using the above files. 

In addition to the corpus of data, the University of 

Alberta provides basic, poker related code [22].  They have 

java source code files for a card, a deck, a hand, and a 

hand evaluator.  The first three are simple classes to 

represent important concepts in the game.  The hand 
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evaluator assigns an integer to every possible five-card 

hand such that a higher hand will be assigned a larger 

integer and two equal hands will be assigned the same 

integer.  This class returns the integer representing the 

strength of the hand for any input of cards numbering 

between three and seven. 

2. Creating Hand Histories from Corpus 

Perl code was used to create hand histories for players 

with the most hands, which is based on the size of the 

player’s file in the player database.  Chosen at random, 

data from May, 1995 was used in these experiments.  The hand 

histories are files that contain all the information about 

the actions of all the players in each hand in which the 

target player participated.  This data was mined from all 

the other player database files in the given month.   

3. Composition of the Action Vector 

For this research, an action vector was created for 

each action performed by the target player (See Figure 4).  

The action (ACT) was limited to raise, call, or fold, based 

on arguments described in the explanation of poker in 

Chapter I.  The following information about the board cards 

was used: board score (BS), probability of a straight draw 

(PSD), the probability of a flush draw (PFD), the 

probability of a straight (PS), the probability of a flush 

(PF), and the Boolean concerning if the board contains a 

face card (FC).  This data is set at zero for all actions 

that occur pre-flop.  The board score is an integer returned 

from the University of Alberta’s hand evaluator class that 

represents the strength of the board cards alone.   
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When a poker player has a potential to make a good hand 

but needs another card, the player is said to be on a 

“draw,” (e.g. four cards of the same suit is called a flush 

draw).  Flushes, straights, and draws to straights and 

flushes were modeled using probabilities.  To obtain a 

probability of having a flush or a straight, every possible 

two-card combination of the remaining cards that when added 

to the current board cards makes a straight or a flush is 

divided by the number of all possible two card combinations 

to obtain a probability.  A similar method is used to 

determine the probability of a draw, except a third card is 

added to represent the next board card to be dealt.   

In addition to the board information, the following 

information is tracked for every action: the number of 

players still in the hand who act before the target player 

(PA), the number of people who act after the target player 

(PB), the number of bets-to-call (BTC), the pot odds (PO), 

and the amount of money the player has when he performs each 

action (POT).  “Pot odds” is a term that represents a 

player’s reward-to-risk ratio and is the quotient of the 

amount of money already in the pot and the amount to call 

the current bet.   

The final information in the action vector is only 

available when the target player reveals their cards at a 

showdown.  These showdown cards are used for all actions 

that the player conducted in that hand to determine the 

strength of the players hand relative to all possibilities 

(HS).  For pre-flop strength, a lookup table was used that 

contains probabilities of having the best two-card hand.  

This probability is based on research by Sklansky [23], a 
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professional poker player, and Billings [6].  After the 

flop, the hand evaluator class discussed above is used along 

with the method similar to the one used to determine the 

possibility of a straight or flush.  Every possible two-card 

combination is added to the board cards.  The number of 

combinations that return a higher integer than the player’s 

hand is divided by the total possible combinations to obtain 

a number between one and zero.  This number is used to 

represent the strength of the player’s hand. 

 

Figure 4.   Example action vectors 

4. Data Mining Hand Histories for Information 

Java code was written to step through the hand 

histories to make the action vectors described above.  All 

the vectors for a given hand are stored in one file.  These 

files are labeled with a number and the strength of the hand 

at the river.  The strength of hand is defined as high, 

medium, low, and folds.  Folds are hands that were folded 

and the hole cards remain unknown.  For the remaining 

categories, the hand strength, as described in the previous 

section, is used.  High is defined as 0.70 and higher.  

Medium is defined as greater than or equal to 0.40, but less 

than 0.70.  Any hand lower than 0.40 is defined as low.  An  
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additional file containing every vector is created and is 

used to determine clusters of hands for use in the following 

experiments. 

B. DESIGN OF EXPERIMENTS 

1. Hidden Markov Models 

A Hidden Markov Model (HMM) is a statistical model used 

to describe the state of a changing environment [20].  The 

states represent different values of discrete random 

variables over time. If one assumes a Markov process, a 

process in which the current state only depends on the 

previous state and not earlier states1, an HMM is useful 

when there is noise or uncertainty in the environment.  In 

an HMM, the states are hidden or unknown but determine the 

observable evidence emitted by the model. 

a. Structure of the HMM 

An HMM consists of a set of states, a start 

distribution, a transition matrix, and an observation 

matrix.  The states are used to represent the hidden (or 

unknown) variables in a random process.  The start 

distribution shows the probability of beginning in each 

state.  The transition matrix contains the probability of 

moving from one state to any other state in the model.  An 

HMM may allow only one path through the model, a linear 

model with no jump-ahead, or it may be possible to go from 

any state to any other state, an ergodic model, or some 

                     
1 This describes a first order Markov process, in a second order 

Markov process, the current state only depends on the previous two 

states, and likewise for third and fourth order processes. 
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variation in between these two models.  The observation 

matrix describes the probability of seeing a given 

observation in a particular state. 

There are three tasks normally associated with an 

HMM: 

• Evaluation: given the parameters of the model, 

compute the probability of a given observed 

sequence using the forward-backward algorithm. 

• Decoding: given the parameters of the model, 

compute the sequence of states that most likely 

generated the observed sequence using the Viterbi 

algorithm. 

• Learning: given an observed sequence or set of 

sequences, calculate the model that best explains 

the observation sequences using the Baum-Welch 

algorithm. 

b. Training and Testing 

For the purposes of the experiments in this 

thesis, it is not necessary to compute the sequence of 

states that generate the observations.  In abstract terms, 

the states of the HMM are supposed to model what the player 

believes about the strength of his hand.  The observations 

are his actions (raise, call or fold) and the game context 

at the time of his actions.  The Baum-Welch algorithm is 

used to train the HMMs used in these experiments.  Once the 

HMMs are trained, the forward-backward algorithm is used to 

determine which HMM was mostly likely to produce a given 

sequence. 
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2. Using Hidden Markov Models 

Experiments with HMMs were conducted in Matlab.  For k-

means clustering, fast k-means code for Matlab was used 

[24].  HMM Toolbox for Matlab is used for all of the HMM 

operations [25].   

a. Vector Quantization of Game Context 

K-means is an algorithm for grouping large amounts 

of data into k different groups.  The objective is to 

minimize the total distance from every data point to one of 

the centroids.  To accomplish this task, k centroids are 

chosen throughout the space at random.  Then, each data 

point is assigned to the closest centroid, creating k 

clusters of data.   Next, ignoring the current centroids, 

centroids for the k groups are re-calculated and placed at 

the center of each of the k clusters.  Again, each data 

point is assigned to the closest centroid.  The algorithm 

repeats a given number of times or until the distance 

between successive centroids is below some minimum 

threshold.  Each of the k centroids is labeled with an 

integer, 1 through k.  The algorithm returns the integer, k 

representing the centroid closest to each of the data 

points.   

For these experiments, k-means was used to reduce 

the number of different sequences used to train the HMMs.  

This is similar to assuming that hands would be played 

similarly during similar situation in a poker game.  The 

following numbers of centroids were used in the experiments 

in this thesis: 50, 75, 100, 175, 250, and 500.  Two 

dimensions of the action vector are eliminated before the 
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clustering process: 1) the Boolean variable for face card 

present (FC), and 2) the action (ACT) - raise, call, or 

fold.  The k-means algorithm returns the 11 dimension 

cluster centroids and an integer (1 through k) representing 

that centroid.  For simplicity, the integer representing the 

centroid is used in the experiments instead of the vector.  

In order to retain the information for FC and ACT that was 

not used in clustering, digits are appended to the end of 

the integer representing the cluster center.   First, one 

digit is appended to represent FC – a “0” for false and a 

“1” for true.  Finally, the second digit appended represents 

the action - the label “0” means fold, “1” stands for call, 

and “2” represents raise.  At this point, each action vector 

is represented by one integer.  For example, the experiments 

with 50 centroids uses integers ranging from 100 to 5013; 

for experiments with 250 centroids, these integers range 

from 100 to 25013. 

b. Representing a Hand for Training and Testing 

HMMs 

In order to train the HMM, the input training 

sequences must contain all the actions of one hand on a 

single line.  Furthermore, each hand must be of equal 

length; therefore, each hand is padded with integers to 

ensure that each sequence is of equal length. Since zero 

cannot be used as an input, an integer higher than any 

possible value of an action vector is used – 5014 for the 

50-centriod experiment and 25014 for the 250-centroid 

experiments are examples.  Any hand in which the player’s 

first action was a fold was not used for training or 

testing.  Figure 5 shows ten example hands from the 100-
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centroid HMM.  Notice that all hands end with several 

instances of padded integer – 10014 in this case.  In the 

first hand in Figure 5, the first action vector is 

represented by 2601.  26 is the label of the vector 

quantized game context, the value of the Boolean FC is 0 and 

the action (ACT) is a call, represented by a 1.  The second 

action of the hand is represented by the 2612: 26 for the 

game context, 1 for the presence of a face card, and 2 for 

the action of a raise. 

 

Figure 5.   Example training and testing data. 

 

c. Experiments with Four HMMs   

The first experiment is to determine if HMMs are 

capable of categorizing a hand as a high, medium, low, or 

fold hand.  To accomplish this, eight files are created for 

the player, two for each category of hands: high, medium, 

low, and fold hands.  Eighty percent of the hands are placed 

in training files and twenty percent are placed in testing 

files.  The HMMs used during these experiments have either 

four or eight states.  The models used were ergodic; 

transitions are allowed from every state to any other state.  

Four HMMs were trained, one corresponding to each category 
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of hand (high, med, low, and fold) using the files 

containing eighty percent of the hands.  The held-out twenty 

percent are then used to test this process.  For observation 

sequences, the first action of a hand is used, then the 

first two actions are used, and so on, until the entire hand 

is used for a sequence.  At each point, the forward-backward 

algorithm was used for each of the four HMMs in order to 

determine which HMM was mostly likely to produce the 

sequence so far.  

d. Experiments with Three HMMs 

A second set of experiments was conducted 

similarly to the method above.  The only difference was that 

no fold data was used.  Therefore, only three HMMs were 

trained. The HMMs were used to attempt to determine a high, 

medium, or low hand. 

e. Experiments with Two HMMs 

In the third set of experiments, a different 

method was used.  Instead of one HMM per category, only two 

HMMs were used for each experiment.  These experiments 

attempt to classify hands as fold or not-fold, high or not-

high, medium or not-medium, and low or not-low.  As an 

example, in the fold or not-fold experiment, all of the 

high, medium, and low data was put into one file and used to 

train one HMM instead of three different HMMs, mutatis 

mutandis for high, medium, and low experiments.  Again, the 

data was separated into eighty percent training data and 

twenty percent held-out testing data.  Again, the forward- 
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backward algorithm is used on each sequence of the testing 

data to determine which of the two HMMs most likely produced 

the sequence. 
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IV. RESULTS AND ANALYSIS 

A. RESULTS AND ANALYSIS 

Accuracy, precision, recall, F-score and baseline F-

score were all used to evaluate the performance of the HMMs.  

Accuracy is the number of predictions correct divided by the 

total number of predictions.  Precision is the proportion of 

the predictions of X that were correctly labeled—X being the 

possible categories of high, medium, low, or fold hands.  

Recall measures the proportion of X’s in the corpus that 

were correctly labeled X.  The F-score is the harmonic mean 

of recall and precision given by the following formula, 

where F is the F-score, P is the precision, and R is the 

recall: 

RP

F
11

2

+

=  

The F-score is used to balance the recall and 

precision.  In order to attain a high F-score, both the 

recall and precision must be high; therefore, one cannot 

improve one measure at the expense of the other measure.  

The baseline F-score is calculated using the F-score formula 

as if every prediction was X.  Therefore, the recall will 

always equal one and the precision will be proportional to 

the frequency of X.  This is used too measure whether or not 

the performance of the HMM is better than chance.  The 

baseline F-score is referred to as baseline for the 

remainder of this thesis.  If the F-score is higher than the  
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baseline, the HMM can predict better than chance and 

assuredly the data contains information that can be used for 

prediction.   

The highest accuracy of the HMMs in this thesis was 

around 85%; however, most HMMs only attained 60% accuracy.  

Although the accuracy is not consistently high, many scores 

were significantly above the baseline score.  Additionally, 

a high precision when predicting fold hands and high hands – 

especially in hands with many actions - was achieved in the 

experiments.  The following paragraphs provide highlights of 

the results, with the full results given in Appendix A. 

1. Experiments with Four HMMs 

The HMM with eight states that used 100 centroids 

performed the best.  The tables in Section 1 display the 

results of this HMM.  As stated in the experimental design, 

the HMM made a prediction based on the first action in a 

hand, then the first two actions in a hand, then the first 

three actions in a hand, and so on, until the end of the 

hand.  The results for all predictions are given in Table 1.  

Although the accuracy is around 50%, the scores are 

significantly above baseline for all categories except 

folds. 

 

Table 1.   Results for 8-state, 100-centroid four HMM 

experiment for all predictions. 
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It should be expected that with more information 

available, the HMM would perform better.  In order to test 

this hypothesis, the performance at certain points in each 

hand is analyzed.  The prediction based on the first action 

in a hand can be expected to be low, as there is very little 

information.  However, the accuracy of the first prediction 

is 55% (See Table 2), which is better than the overall 

accuracy.  The HMM never makes a “low” prediction based on 

the first action.  This is not out of the ordinary, as low 

hands can easily be confused with fold hands.  In fact, of 

the 27 low hands, 24 were predicted as fold hands based only 

on the first action. 

 

 

Table 2.   Results for 8-state, 100-centroid four HMM 

experiment for the first prediction in each hand. 

As play continues in a hand, a player will have more 

actions to use in order to judge the strength of an 

opponent’s hand.  We hypothesized that using the first three 

actions of a hand to make a prediction should improve the 

performance of the HMM.  However, Table 3 shows that the 

accuracy drops considerably.  The performance on fold hands 

is extremely low and many medium hands are mistakenly 

labeled as high hands.  Note that if the opponent does not 

perform three actions in the hand, the hand is not included 

in this table.  The third action of a hand is likely to be 



 34 

just after the flop where the strength of a hand changes 

considerably.  This may explain why the performance drops at 

this point in the hand.   

 

Table 3.   Results for 8-state, 100-centroid four HMM 

experiment for the first three actions. 

The sixth action will typically be well after the flop 

when hand strength is relatively stable.  Accordingly, the 

performance of the HMM increases significantly over the 

performance based on the first three actions, (See Table 4).  

Again, if the hand does not contain six actions, the 

performance of the hand is not included in this table.  Note 

that the precision of folds is approaching 90% while the 

precision of high hand is almost 85% at this point.  This 

tells a player that if the HMM predicts a fold, it is 90% 

sure the opponent will fold, and if the HMM predicts high, 

it is 85% sure the opponent has a high hand.  Being able to 

distinguish between high and fold at this stage in the hand 

is very important because there is likely to a large pot at 

stake.  Making this distinction can earn a good deal of 

money or prevent the loss of more money.  Furthermore, all 

of the medium hands that are mislabeled are called high 

hands and most of the mislabeled high hands are called 

medium hands.  This indicates the predictions are close and 

perhaps changing the threshold between medium and high hands 

may improve the performance significantly. 
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Table 4.   Results for 8-state, 100-centroid four HMM 

experiment for the first six actions. 

Although there are only six hands that contain eight or 

more actions, Table 5 shows that a high precision is 

attainable in the fold and high categories. 

 

Table 5.   Results for the 8-state, 100-centroid four HMM 

experiment for the first eight actions. 

Table 6 shows the results of only the last prediction 

of each hand.  The last prediction of each hand uses all the 

actions in that hand –- be it two actions or eight actions -

- to make a prediction.  This table shows the highest 

accuracy for this HMM and a very high precision on fold 

hands.  This is somewhat misleading because the fold action 

is part of the action vector and is always the last action 

in a fold hand.  The fact that the F-score is not higher 

shows that the actions preceding the fold mathematically 

outweigh the fold action in many of the hands. 



 36 

 

Table 6.   Results for 8-state, 100-centroid four HMM 

experiment for the last prediction. 

For these experiments, accuracy between 55% and 60% is 

common, with the accuracy generally increasing as the number 

of actions in the hand increases.  Additionally, as the 

number of actions increases, the precision of the fold hands 

and high hands increases. 

2. Experiments with Three HMMs 

The HMM with four states and 50 centroids performed 

reasonable well and was consistently between 51% and 55% on 

accuracy.  However, the results for the HMM with eight 

states and 100 centroids preformed the better in key areas 

described below. 

Similar to the previous experiments, this method 

achieved an accuracy of 53% on all predictions.  Low 

performs 19% better than the baseline score.  Most of the 

mistakes in the high and medium categories are in the 

opposite category, again showing that a change in the 

threshold between these two categories may cause significant 

improvements.  These results are shown in Table 7. 
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Table 7.   Results of 8-state, 100-centroid three HMM 

experiment for all predictions. 

This time, as should be expected, the prediction based 

on only the first action is worse than the overall accuracy, 

(See Table 8.  Similarly to the first action in the four HMM 

experiment, this model does not predict a low hand based on 

the first action. 

 

Table 8.   Results of 8-state, 100-centroid three HMM 

experiment for the first prediction. 

The performance based on the first three actions is 

considerably higher—exceeding 58% (see Table 9).  

Furthermore, the recall and precision scores are higher in 

all categories here than those recorded in the four HMM 

experiment. 
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Table 9.   Results of 8-state, 100-centroid three HMM 

experiment for the third prediction. 

The performance of the last prediction is right at the 

average for the three HMM experiments and performed much 

worse than the four HMM experiments (See Table 10).  This is 

likely due to the fold data that is inherent in the last 

action of a fold hand, as discussed in the previous section.  

 

Table 10.   Results of 8-state, 100-centroid three HMM 

experiment for the last prediction. 

Except for predictions based on the first three 

actions, this method did not perform better than the four 

HMM experiment.  

3. Experiments with Two HMMs 

Accuracy is much improved in these experiments – 

exceeding 85% in some cases.  This shows that given broader 

categories, we can improve our performance. 
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Similar to the above experiments, 100 centroids result 

in the highest accuracy.  The accuracy for fold hands is 

about 67% based on all actions (See Table 11). 

 

Table 11.   Results for the 100-centroid fold or not-fold HMM 

for predictions based on all actions. 

Low hands scored the lowest accuracy on the predictions 

based on the first actions and the highest accuracy in the 

last predictions.  Table 12 shows that the first action is 

only able to discriminate low or not-low at a 39% rate.  As 

expected, this is difficult to determine base solely on the 

first action of a hand. 

 

Table 12.   Results for the 100-centroid HMM predictions for 

Low or Not-Low based on the first action. 

Table 13 shows that as the hand progresses, it becomes 

easier distinguish low from not-low.  In fact, this is where 

the highest accuracy is attained—exceeding 84%. 
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Table 13.   Results for 100-centroid HMM for predictions of 

Low or Not-Low based on the Last Action. 

Interestingly, Tables 14 and 15 show that medium and 

high hands are relatively easy to discriminate on the first 

action.  For medium or not-medium hands, accuracy over 70% 

was attained. 

 

Table 14.   Results for the 100-centroid HMM for predictions 

of Medium or Not-Medium based on the First Action. 

When discriminating between high and not high, accuracy 

over 66% was attainable on the first action. 

 

Table 15.   Results for the 100-centroid HMM for predictions 

of High or Not-High based on the First Action. 
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Table 16 shows the best accuracy in all of the 

experiments described in this thesis.  As with the 100-

centroid HMM, the 250-centroid HMM performed best when 

determining low or not-low based on the last action of the 

hand.  The accuracy here was over 85%. 

 

Table 16.   250-centroid HMM for Low or Not Low predictions 

based on the last action. 

B. SUMMARY 

In general, our experiments were successful in the 

following areas.  Precision increased significantly as 

increasing numbers of actions are made in a hand, 

specifically in fold and high hands.  Most high hands that 

were mislabeled were called medium, and vice versa.  This 

indicates that adjusting the threshold between these hand 

categories will improve performance. 
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V. CONCLUSIONS AND FUTURE WORK 

A. SUMMARY 

A new method for adversary modeling was explored in 

this thesis.  There have been numerous experiments conducted 

on adversary modeling in a wide array of domains—to include 

poker—but none have used Hidden Markov Models in the manner 

described here.  This thesis uses Hidden Markov Models to 

predict what an opponent thinks about the strength of his 

hand.  First, data was collected from an online corpus and 

mined for the information about the hands of several 

individual players.  Next, we choose 13 dimensions of the 

game of poker of which an opponent could use to judge the 

strength of his hand.  These game contexts were clustered 

together using the k-means algorithm and then used to train 

Hidden Markov Models.  Several models were used to determine 

the most likely model to produce a given sequence of a hand, 

i.e., predict the strength of the hand.  Finally, precision, 

recall, and F-scores were used to evaluate the performance 

of the models.  The methods in this thesis did not produce 

accuracy above 85% and was usually lower than 60%; however, 

most results were above the baseline, which means the 

predictions were better than random.  Furthermore, late in 

hands the HMMs were able to make clear distinctions between 

fold hands and high hands—a distinction that will earn a 

large amount of money in the long run. 
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B. FUTURE WORK 

1. Adjusting Hand Strength Thresholds for Hand 
Categories. 

In addition to the work described above, other 

experiments were conducted using different thresholds for 

high, medium, and low hands.  Additionally, more hands were 

used in the experiments, resulting in more hands with up to 

eight actions.  In one set of experiments, the threshold for 

high hands was raised to 0.90 and the threshold for medium 

hands was raised to 0.70.  In another set of experiments, 

the threshold for high was set to 0.85 and the threshold for 

medium hands was set to 0.65.  In these experiments, there 

were at least 26 hands of at least eight actions; as opposed 

to the six hands with at least eight actions described in 

Chapter IV.  Additionally, the distributions of hands in the 

high, medium, and low categories were evenly distributed in 

these new experiments.  The predictions based on the first 

eight actions produced many high scores.  All predictions 

were well above baseline.  For fold hands, the F-score was 

94%, with a recall of 100% and a precision of 89%.  The 

precision from high hands was also 100% and the overall 

accuracy score was 69%.  This indicates that adjusting the 

thresholds further could result in even better performances.  

Unfortunately, different thresholds might produce different 

results for each opponent - negating one of the greatest 

benefits of using HMMs. 

2. Modeling Advanced Play in Poker 

Misinformation is inherent in the game of poker.  Many 

advanced players will “slow-play” some hands – the technique 
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of playing a very strong hand weakly in order to extract 

more money from your opponent.  The opposite of slow-playing 

is bluffing – playing a weak hand as if it were very strong 

in hopes of making your opponent fold.  Another advanced 

technique is drawing to a strong hand – where a player who 

does not currently have a strong hand but can call or raise 

because of a high likelihood of getting a strong hand with 

future board cards. 

Modeling these types of hands is extremely difficult.  

Some of the bluff and draw hands could end up in the fold 

category – if the opponent re-raises and then the bluffer 

fold, or if the drawing hand does not catch the draw and 

folds.  Despite the difficulties, some data mining 

techniques could be used to classify hands into these 

categories.  Then, these hands could be used to train and 

test more HMMs.  Future experiments would involve high, 

medium, low, bluff, slow-play, draw, and fold hand 

categories with a corresponding HMM for each category. 

3. Principle Components Analysis 

In these experiments, the integer labels for the 

centroids were used instead of the centroids themselves.  If 

the data point of the centroid contains valuable 

information, using the point instead of label for the point 

may improve the performance.  Principle Components Analysis 

(PCA) is a technique used to analyze multidimensional data.  

PCA uses linear combinations of the original dimensions to 

convert the data into a coordinate system.  The dimension 

with the greatest variance is the first coordinate and is 

called the first principle component, the dimension with the 

second greatest variance is the second coordinate and is 



 46 

called the second principle component, an so on.  PCA can 

also be used to reduce the number of dimensions by ignoring 

the dimensions with less variance.  Performing PCA on the 

data could improve the results. 

4. Dimension of Game Context 

Using PCA could also provide insight that can be used 

to choose other dimensions that can be used.  For example, 

the Boolean used in this thesis tracks whether or not there 

is a face card on the board.  A Boolean for tracking the 

presence of an Ace and another that tracks the presence of a 

King could prove to be more useful.  Also, a different 

technique for analyzing the board cards could be used.  The 

board strength, probability of straight, probability of 

flush, probability of straight draw and probability of a 

flush draw dimensions used in this thesis could oversimplify 

the threats that a board presents to players. 

C. CONCLUSIONS 

Modeling modern adversaries is difficult because of the 

many, differing complexities on small terrorist groups.  In 

order to be effective, one common system for modeling every 

group is necessary.  This thesis attempts to create an 

adversary modeling system that is useful in the domain of 

Texas Hold’em Poker because of its structure, rules, and 

parallel with wartime adversarial situations.  The results 

show that although the accuracy is not sufficient to return 

to the more complex domain of warfare, the Hidden Markov 

Models do perform significantly better than random guessing.  

With more modifications, the accuracy should improve enough 

to conduct experiments with terrorist models. 
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APPENDIX: RESULTS OF HMM EXPERIMENTS 

A. EXPERIMENTS WITH FOUR HMMS 

The first table applies to all of the other tables in 

Section A.  It shows the number of predictions made for each 

group of actions. 

 

Table 17.   Number of Predictions in each Action Category. 
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Table 18.   Results for the 50-centroid, 4-state HMMs. 
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Table 19.   Results for the 50-centroid, 8-state HMMs. 

 

 

 

 

  

 

 

 



 50 

 

 

 

 

Table 20.   Results for 75-centroid, 4-state HMMs. 
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Table 21.   Results for 75-centroid, 8-state HMMs. 
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Table 22.   Results for 100-centroid, 4-state HMMs. 
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Table 23.   Results for 100-centroid, 8-state HMMs. 
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Table 24.   Results for 175-centroid, 4-state HMMs. 
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Table 25.   Results for 175-centroid, 8-state HMMs. 
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Table 26.   Results for 250-centroid, 4-state HMMs. 
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Table 27.   Results for 500-centroid, 8 state HMMs. 
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B. EXPERIMENTS WITH THREE HMMS 

The first table applies to all of the other tables in 

Section B.  It shows the number of predictions made for each 

group of actions. 

 

Table 28.   Number of Predictions in each Action Category. 
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Table 29.   Results for 50-Centroid, 4-state HMMs. 
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Table 30.   Results for 50-centroid, 8-state HMMs. 
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Table 31.   Results for the 75-centroid, 4-state HMMs. 
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Table 32.   Results for the 75-centroid, 8-state HMMs. 
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Table 33.   Results for 100-centroid, 4-state HMMs. 
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Table 34.   Results for the 100-centroid, 8-state HMMs. 
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Table 35.   Results for the 175-centroids, 4-state HMMs. 
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Table 36.   Results for the 175-centroid, 8-state HMMs. 
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Table 37.   Results for the 250-centroid, 8-state HMMs. 
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Table 38.   Results for the 500-centroid, 8-state HMMs. 
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C. EXPERIMENTS WITH TWO HMMS 

The first table applies to all of the other tables in 

Section C.  It shows the number of predictions made for each 

group of actions.  All HMMs in Section C contained eight 

states. 

 

Table 39.   Number of Predictions in each Action Category. 

 

 

 

Table 40.   Results for 100-centroid HMMs predicting fold or 

not-fold. 
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Table 41.   Results for 100-centroid HMMs predicting high or 

not-high. 

 

 

 

Table 42.   Results for 100-centroid HMMs predicting medium or 

not-medium. 
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Table 43.   Results for 100-centroid HMMs predicting low or 

not-low. 

 

 

 

Table 44.   Results for 250-centroid HMMs predicting fold or 

not-fold. 
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Table 45.   Results for 250-centroid HMMs predicting high or 

not-high. 

 

 

 

Table 46.   Results for 250-centroid HMMs predicting medium or 

not-medium. 
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Table 47.   Results for 250-centroid HMMs predicting low or 

not-low. 

 

 

 

Table 48.   Results for 500-centroid HMMs predicting fold or 

not-fold. 
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Table 49.   Results for 500-centroid HMMs predicting high or 

not-high. 

 

 

 

Table 50.   Results for 500-centroid HMMs predicting medium or 

not-medium. 
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Table 51.   Results for 500-centroid HMMs predicting low or 

not-low. 
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